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Abstract-Analytic:al solutions for an elliptical cylinder cavity or a crack inside an infinite pie­
zoelectric medium under combined mechanical-electrical loadings are formulated via the Stroh
formalism and well confirmed by finite element analysis. The results show that the stress and electric
fields in the vicinity of the crack tip are, in general, determined by a complex vector of intensity
factors. The complex vector of intensity factors may reduce to be real under certain circumstances.
For a vacuum crack, the electric field inside the crack in the direction perpendicular to the crack
magnifies the corresponding applied electric field by more than 1000 times. In this case, the electric
field strength in the material has a finite value at the crack tip, but the electric displacement
approaches infinity at the crack tip due to the piezoelectricity. The self-consistent analysis is
developed to determine the deformed crack profile, The energy release rate for the cavity propagation
is formulated under the condition that the ratio of the minor semi-axis to the major semi-axis of the
ellipse remains unchanged. For an insulating crack, the applied electric field contributes nothing to
the energy release rate when the undeformed crack profile is used, while the electric field resists
crack propagation when the deformed crack profile is used. For a conducting slit crack, the energy
release rate is independent of the applied electric field perpendicular to the crack, and is enhanced
by the applied electric field parallel to the crack. ((i 1998 Elsevier Science Ltd.

I. INTRODUCTION

The mechanical reliability of piezoelectric materials becomes increasingly important as they
are used in more and more sophisticated areas, Thus, there has been tremendous interest
in studying the fracture behavior and fracture mechanics of those materials (Barnett and
Lothe 1975; Pohanka et ai" 1976; Pohanka et ai" 1978; Cherepanov, 1979; Deeg, 1980;
Yamamoto et al., 1983; Pak and Herrmann 1986; McMeeking, 1989; Mehta and Virkar,
1990; Pak, 1990, 1992; Sosa and Pak, 1990; Suo et ai" 1992; Zhang and Hack, 1992; Suo,
1993; Kumar and Singh, 1996; Lynch, 1996a; Zhang and Tong, 1996; Hom et al., 1996;
Kumar and Singh, 1997a, b). However, there is still confusion regarding the effect ofelectric
field on the fracture behavior and criterion. For the case that a crack is treated as a
mathematics slit without any thickness and has a finite dielectric constant, the energy release
rate for crack propagation evaluated from linear fracture mechanics is positive definite and
independent of applied electric fields when the electric field inside the crack is considered
(McMeeking, 1989; Zhang and Tong, 1996). On the other hand, the energy release rate is
not positive definite and the electric loading would always impede crack propagation if the
electric field inside the crack is ignored (Pak, 1990; Suo et al., 1992). Expenmentally,
significant differences in the crack growth behavior perpendicular and parallel to the poling
direction of PZT ceramics were observed by Yamamoto et al. (1983), Mehta and Virkar
(1990) and Tobin and Pak (1993) in indentation fracture tests under static and time-varying
electric loadings. For a given mechanical load, a positive electric loading increases the crack
length normal to the poling axis, while a negative electric loading reduces it. Park and Sun
(1995) carried out mode I and mixed mode fracture tests on PZT-4 piezoelectric ceramics
and observed that a positive electric field tends to open the crack and reduce the fracture
load while a negative electric field increases it. Those experimental results cannot be
explained if the energy release rate derived from linear fracture mechanics is used as a
fracture criterion regardless of whether the crack is treated as being electrically permeable
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or not. To solve this problem, Park and Sun (1995) argued that the fracture process is
mechanical in nature and, therefore, only the mechanical energy release rate should be used
as a fracture criterion, which linearly depends on the applied electric field. Recently Gao et
al. (1997) proposed, by analogy to the classical Dugdale model, an electric strip saturation
model and hence derived the local and global energy release rates. Under small-scale
yielding conditions, the global energy release rate is equal to that of a linear piezoelectric
crack without electrical yielding. The local energy release rate gives linear predictions which
agree with the above-mentioned experimental results. Since it is assumed that the electric
yielding zone remains unchanged during crack propagation, only the mechanical energy is
taking into account in the local energy release rate. In this sense, the local energy release
rate provides a physical basis to the mechanical energy release rate.

Another important issue in studying fracture mechanics of piezoelectric materials is
the electric boundary condition along the crack faces. One commonly used boundary
condition is the specification that the normal component of electric displacement along the
crack faces equals zero (Pak, 1990). This boundary condition ignores the electric field
within the crack. The other commonly used boundary condition treats the crack as being
electrically permeable (Mikhailov and Parton, 1990). Sosa (1991) has investigated the
mechanical and electrical fields in the vicinity of circular and elliptical holes and used the
asymptotic expressions for the electromechanical fields in the vicinity of a crack to study
the electric fields' effects on crack arrest and crack skewing (Sosa, 1992), Pak and Tobin
(1993) found the ratio of the crack tip electric field to the applied field approaches unity as
an elliptical cavity reduces to a slit. Dunn (1994) also investigated the effects of crack face
boundary conditions on the energy release rate in piezoelectric solids. His results indicate
that the impermeable assumption can lead to significant errors regarding the effects of the
electric fields on crack propagation based on an energy release rate criterion. In a previous
paper (Zhang and Tong, 1996), we studied the boundary conditions by investigating an
elliptical cylinder cavity. ]n the limiting process, we found that the two commonly used
boundary conditions are actually two extremes of the exact boundary conditions. Since the
electric field exists in air and in vacuum, both the geometry and size of the crack have a
great influence on fracture behavior of these materials (Zhang, 1994a; Zhang and Tong,
1996). In the present work, we investigate the general behavior of cracks by studying an
elliptical cylinder cavity. Only in this way can we determine the electric field within the
cavity (crack).

In a real sintered piezoelectric sample, there are many flaws, each having a finite width
and finite size, i.e. they are not mathematically slits. Those size effects on the energy release
rate have been studied under pure electric loadings (Zhang, 1994a). In this case, letting the
crack width approach zero and maintaining the dielectric constant of vacuum as its finite
value, 8.85 x 10- 12 F1m, where F and m denote, respectively, farad and meter, the electric
field will contribute nothing to the energy release rate. On the other hand, the electric field
does impeded crack propagation if the crack width has a relatively large value (Zhang,
1994a)t.

The above-mentioned theoretical approaches are on the basis of linear fracture mech­
anics. However, real piezoelectric materials behave nonlinearly, in particular, under high
level of applied electric andlor mechanical loadings. Jona and Shirane (1993) described in
detail the electrical and mechanical properties of piezoelectric crystals. The relationship
between strain and electric fields is nonlinear and their hysteresis loop looks like a "but­
terfly". Cao and Evans (1994) found the mechanical nonlinearity in poled PZT piezo­
electrics. Lynch (I 996b) studied the nonlinear electro-mechanical response of8/65/35 PLZT
under a compressive uniaxial stress. Those electrical, mechanical and electro-mechanical
nonlinearities are induced by electrical domain switching (Jona and Shirane, 1993; Cao
and Evans, 1994; Lynch, 1996b). A linear analysis would be valid if a small scale yield
assumption is made, e.g. the model of multiscale energy release rates is proposed under
such assumption (Gao et al., 1997). In addition, a linear electro-elastic analysis is the first
step to understand the fracture behavior of piezoelectric materials. Even at this stage, as

t Equation (7) in the note (Zhang. 1994a) should he corrected as F = [V dQ and accordingly eqns (8), (9),
(II) and (14) should change the sign. .



Linear electro-elastic analysis of a cavity or a crack 2123

discussed above, the boundary conditions along the crack faces and the energy release rate
should be clarified, which is the goal of the present work.

In the present study, the mechanical and electric fields for a linear anisotropic pie­
zoelectric medium with an elliptical cylinder cavity or a crack under combined mechanical­
electric loadings have been systematically formulated in Sections 2 and 3 via the Stroh
formalism attached in Appendix 1. In Section 4, the energy release rate for a cavity or crack
propagation is given based on the thermodynamic approaches described in Appendix 2. A
geometrically nonlinear analysis, called self-consistent calculation, has been developed in
Section 5 to determine the deformed crack profile in the presence of a strong electric field
inside the crack. In Section 6, examples for a specific material (PZT-4 ceramic) are presented
to explicitly demonstrate the analytical result together with some finite element confir­
mation. Finally, concluding remarks are given in Section 7.

2. SOLUTIONS FOR AN ELLIPTICAL CYLINDER CAVITY

The general solution for the coupled mechanical-electric problem is described in
Appendix I. Now, consider an infinite piezoelectric material containing an elliptical cylinder
cavity (xTJa2+X~/b2 = I) under combined mechanical-electric loadings, as shown in Fig.
I, where a and b are, respectively, the major and minor semi-axes of the ellipse. The electric
loading is in-plane mode, while the mechanical loading can be in-plane tension and/or shear
(mode I and/or mode II), and/or anti-plant: shear (mode III). Previous work by the authors
(Zhang and Tong, 1996) reports solutions for the in-plane electric and anti-plane mechanical
loadings; the present work studies general cases.

The boundary conditions along the surface of an elliptical cavity have the following
forms

(J.L = 0 (traction-free)

D.L = DC.L (surface charge-free)

E
1

= E~ (irrationality of electric fields)

0'; or e;

-, Jr--
8 _

Jr--
8 c;

Q -,
(~

w
.... .....

0
0

Jr--8 _
-~

8 c;

k1 0

-~ dr-

E~~ or D2~

Fig. I. Remote mechanical and electric loads in the z-plane.
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(2)
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where (J denotes pure mechanical stress; the superscript c refers to "in the cavity", while
parameters "in the material" do not have any superscript; and the subscripts .1 and II,
respectively mean "perpendicular" and "parallel" to the surface.

Since only an electric field exists in the cavity, the governing and the constitution
equations are, respectively, reduced to

i = 1,2

(4)

(5)

where ICC is the dielectric constant of the cavity and the electric field inside the cavity is
treated isotropically. In the present work, ICC may change from 8.85 x 10- 12 F/m for a
vacuum cavity to infinity for an electrically conductive cavity. The general solution to eqn
(4) is

4/ = cD(z) + cD(z) (6)

where cD(z) is a complex analytic function of z with z = XI + iX2' and the overbar means
complex conjugate. The complex electric field, EC, and electric displacement, DC, are,
respectively, given by

dcD
EC

= E~ -iE~ = -2 dz·'
dcD

DC = D C

I -iD
e
2

= _2"c __
dz· (7)

In order to determine cD, we introduce the mapping function

Z=R(W+S) (8)

which maps the ellipse in the z-plane to a unit circle in the w-plane, where w = Vl + iU2'

R = (a+b)/2, and m = (CJ:.-b)/(a+b). The line segment (- c, c) in the z-plane is mapped to
a circle with a radius .Jm in the w-plane, as shown in Fig. 2, where c2 = a2

- b2
. The electric

field must be single-valued along the linear segment in the z-plane; as such it requires that

E'; or U;
Fig. 2. Mapping the elliptical cavity to a unit circle in the w-plane.
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in the w-plane, where () is the polar angle. The inverse mapping function of egn (8) is

~+ /-:;2 _c2
.;;.. "",,:,,

lV =--~~---2R .
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(9)

(10)

The general solution for a piezoelectric material is given by eqns (AI4)-(AI6) in
Appendix I. In each of the four z,-planes, where z, = Xl +P,X2 and Po is the eigenvalues
with positive imaginary part (see Appendix I for details), the ellipse is distorted. However,
the following mapping function

can map the four distorted ellipses to a unit circle, where

(II)

a-ip,b
R = ~----, 2

a+ip,b
In =~--­

, a- ip,h' (12)

Similarly, the inverse mapping function has the following form

where

(13)

(14)

As expected, eqn (13) yields w, = eifJ
( - n < e ,,:;: n), when z, = a cos e+p,b sin e, i.e. along

the elliptical hole surface. Now, the problem in the z-plane can be solved by mapping the
elliptical hole to the circular ring in the w-plane. The boundary conditions along the surface
of the cavity can be expressed in terms of the extended functions (see Appendix I for
details)

ljJi = 0, i = 1,2,3 (traction-free)

1jJ4 = - iKC (<I>-<1» (surface charge-free)

U4 = cPc (irrotationality of electric fields).

(15)

(16)

(17)

Equations (16) and (17) indicate that both electric potentials inside the cavity and the
outside medium have the same reference.

The complex potential <I> has the following form

<I> = Rc (w+ :) (18)

where c is a constant to be determined. The component of vector f in eqns (A J4)-(A16)
can be expressed as
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. ( a~2)f~ = R. ao1 w. + w. (19)

where a.l and a.2 are also constants to be determined by the boundary conditions. The
boundary conditions along the unit circle, i.e. eqns (15)-(17) require

Ljia~ +Liiar'i = 0, j = 1,2,3 (traction-free)

L4ia~ +L4iar'i = -iKC(c-me) (surface charge-free)

A4ia~ +A4iar'i = c+me (irrotationality of electric fields).

Solving eqns (20)-(22), the constants c and af can be expressed in terms of aT

(20)

(21 )

(22)

(23)

(24)

where B44 is a negative real parameter in units of reciprocal dielectric constant (Lothe and
Barnett, 1975; Suo et al., 1992), and

d = (O,O,O.d)T

d = -iKC(c-me)

R
a*2 =--' a· 2

L R '.

(25)

The constant vector a l can be determined from remote loading conditions. For a mode III
crack in a piezoelectric material, there are four combinations of electric and mechanical
loadings applied along the xraxis (Park, 1990; Zhang and Tong, 1996). For an infinite
domain, in general, the remote electric loading is electric field strength E; or electric
displacement D;, while the remote mechanical loadings are stresses (Jij or strains 8", as shown
in Fig. I. As they are connected by constitutive equations, only one of each counterpart
pair is required to determine the constant vector al' The remote extended stresses and
strains are given by

lim S = C I lim L = Soc .
;:---JoX'

(26)

where the superscript .. co" refers to the remote applied extended loads. S is the extended
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strain tensor, C is the extended elastic constant tensor, <>denotes a diagonal matrix, the
superscript" - I" means reciprocal of a matrix, and

1: 1 = (<TII,<T21.0"3j,D 1)T

1: 2 = (0"12'0"22'0"32,D 2 )T. (27)

From eqns (7), (18) and (23), the electric field inside the cavity can be obtained as

(28)

Equation (28) indicates that the electric field within the cavity is uniform. This phenomenon
was found in the previous work (Zhang and Tong, 1996). Defining the effective dielectric
constant Kef[ as

(29)

and using the two dimensionless ratios x and f3 (Zhang and Tong, 1996)

x == bla

(30)

we can rewrite eqn (28) as

From eqn (31), two extremes can be discussed. One is when the dielectric constant of the
cavity is treated as zero, the electric field inside the cavity still has a finite value of

'C .- (1~:x)L<I--ip"x>al+(I+x)L(l-ip,x>al
E = I(B4 +B4 ) ... --------- ---... 2x--·------------- . (32)

Equation (32) shows that the electric field inside the cavity is influenced greatly by the
dimensionless parameter x. The smaller x, the higher the electric field. The electric field
approaches infinity as x approaches zero. Another extreme is the electric field inside the
cavity nulls when the dielectric constant of the cavity approaches infinite, i.e. fJ --> CJJ. The
result is expected for a conducting crack. This behavior is similar to that for mode III
cracks and more detailed discussions are given by Zhang and Tong (1996).

The extended displacements and stresses in the material are obtained as

where

u = Af+Af

1: 2 =Lfl+Lf l ., 1:] = -Lf2 -Lf.2

(33)

(34)
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(35)

The extended strains can be calculated from the stress-strain correlation or from the
extended displacements (see Appendix 1 for details).

3. ELECTRIC AND MECHANICAL FIELDS OF A SLIT CRACK

The electric field inside a crack can be obtained directly from eqn (31) by letting (X

approach zero. If the dielectric constant K
C of the crack medium has a finite value (i.e. fJ is

neither zero nor infinity), we have

(36)

When fJ is much smaller than unity, eqn (36) shows that the electric field inside the crack
is inversely proportional to fJ. As discussed before by Zhang and Tong (1996) for a mode
III crack, the electric field inside a crack is related to the order of taking limits of (X and fJ.
Equation (31) shows that the electric field inside the crack will be zero if both fJ and (XfJ
approach infinity for an electrically conductive crack.

When the cavity reduces to a slit crack, the extended displacements and stresses have
the same forms as given by eqns (33) and (34) withf~, .t~.1 and .t~.;' being reduced as

f = p (a ~ C:~9.:-_)_~)~,+v.!L==_a~
J Ct. "ly' .':i{ I /---- I-~- .

. -- (7 + i72 _a2 )2 2/-2 __ l!2
--'J. ", L.:x V-'"':I:

Define a complex stress intensity factor vector as

(37)

(38)

for the right crack tip. Substituting eqns (34) and (37) into eqn (38) and then completing
the limiting process leads to

(39)

Thus, the mode II, I and III intensity factors and the electric displacement intensity factor
are twice the real part of the complex intensity factor vector

K = K* +1(* = J~[L~ -(d+d)]

K = (KII , K" Kill, KD)T. (40)

Since the first three components in the d vector are zero, the first three components in the
complex vector are real and correspondingly have the half values of the mode II, I and III
stress intensity factors. However, the fourth component of the complex vector is, in general,
a complex number and depends on the value of d. From eqns (23) and (25), we have
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d = (B4+ B4) (I - e(2)I:(T-=7P:-a)a~ + (l + el 2
+ 2fJel)L(l -- ip,el>a, . (41)

2B44 (I +el)[1 +el2 +ellfJ+elfJ]

The electric property of a crack can be divided into two classes: insulating and conducting.
When el-> 0, we have

(B4+B4)L~)d = --~------ for a finite fJ or fJ -> 0 and elIJ~->O
2B44

(42)

el
I + ~

fJ

for fJ -> 0 and ellfJ is finite (43)

d = 0 for fJ --> 0 and ellfJ --> 00

for an insulating crack; and

(44)

(45)

and elli is finite (46)

(47)

for a conducting crack. It can be seen in egn (44) that d = 0 is appropriate only when fJ -->

oand ell fJ --> 00. In this case, the electric displacement intensity factor has the conventional
form: KD = fi;D~ (Suo et al., 1992). For most PZT ceramics containing a vacuum flaw
with the smallest dielectric constant, the ratio of the dielectric constant of the crack to the
effective dielectric constant of the material is at the order of 10- 3

. To satisfy the conditions
for d = 0 requires that el = bla ~ 0.01. Caution must be used here to employ the fracture
mechanics to treat a real cavity and this situation has been discussed in previous work
(Zhang, 1994a). It can be seen in eqns (42)-(44) that the parameter dis real. In this case,
the extended displacements and stresses in the vicinity of the crack tip can be expressed in
terms of the mode II, I, HI intensity factors and the electric displacement intensity factor and
the complex intensity factors are not needed here. It should be noted that the conventional
definition for the electric displacement intensity factor fails for the insulating crack if d does
not equal zero. Equations (45)-(47) show that d is not zero for a conducting crack. Under
conditions that Ii --> X) and elli --> 0, d is real for a conducting crack. However, under
conditions that Ii -> X) and elli is finite, and Ii --+ 00 and elfJ --> 00, d has, in general, a
complex value because La, is primarily a complex parameter which depends on the material
properties, the crack orientation and the remote loadings. Thus, the four conventional
intensity factors are not sufficient to describe the mechanical and electric fields in the vicinity
of a conducting crack tip for the linear anisotropic piezoelectric materials under combined
mechanical--electricalloadings. In this case., a general complex vector of intensity factors is
necessary for this analysis.

When the origin of the system is moved to the right crack tip, we introduced new
variables z: = z, - a. Then, the electric and mechanical fields near the right crack tip can
be expressed in terms of the complex stress intensity factors as
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The crack tip extended opening is calculated by

(48)

(49)

where the superscript ., +" and" -" denote, respectively, the "upper" and "lower" crack
faces. Substituting eqn (33) into egn (49) yields the extended crack opening as

(50)

Equation (50) shows that the crack opening has an elliptical profile. Near the crack tip, the
extended displacements can be expressed in teams of the complex vector of the intensity
factors as

(.~*) -( 12?)---u=A ~ L'IK*+A Y t· L'IK*.
vn ..;n

Similarly, the extended crack opening near the crack tip is given by:

c­
2,,!2r-~

~u = ---"-r=- [BK* + BK*)
'\lIn

where r is the distance from the crack tip.

(51 )

(52)

4. THE ENERGY RELEASE RATE FOR CRACK OR CAVITY PROPAGATION

The energy release rate can be evaluated from each of the four thermodynamic func­
tions: free energy, electric enthalpy, mechanical enthalpy and full Gibbs energy, or from
each of the four associate potentials. Details are described in Appendix 2. In the present
work, we follow Rice's treatment (1968) and use the potential associated with the electric
enthalpy to formulate the energy release rate. Using the same principle and methodology,
we first derive the energy release rate for an elliptical cavity, as shown in Fig. I, under the
condition that the ratio of the minor semi-axis to the major semi-axis,:x = bla is maintained
unchanged. When the elliptical cavity reduces to a slit crack, the energy release rate will
automatically respond for slit crack propagation. Since only two-dimensional problems
are treated here, all properties are calculated per thickness. In this case, the crack area
A = I x a = a. Thus, the energy release rate is given by

OPH I (CUi Oc/Jni
) (! I2J=-~-= (i-;,-+D;-;l- dr-;)' hdfl.

oa r ca oa c,a 11
(53)

A factor of two is added here due to two crack tips in this system. Using the solutions given
in previous section and after tedious algebraic calculation, finally, we have
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- [i(1 + c.:)(d -d) - 2c.:Lff (Aa l + Aa~)

-c.:[(1 +c.:)(d+d) -21:;VP"[A(p.)a, +A<p:)aj-]].

2131

(54)

Equation (54) shows that the energy release rate for an elliptical cavity growth depends on
both mechanical and electric loads, as well as the ratio of c.: = bla and the value of the
dielectric constant K

C inside the cavity.
When the cavity reduces to a slit crack (i.e. c.: = bla = 0) and the dielectric constant of

the crack medium K
C has a finite value (for example, K

C = 8.85 X 10- 12 F1m for a vacuum
crack), d is real and the energy release rate for the crack propagation is reduced to

J= n:[(L~'Y(B+B)(Lf-d)]. (55)

If the crack is an electrically conductive crack with K
C being infinite, the energy release rate

is

If the parameter d = 0, however, the energy release rate for the crack propagation is

na T -
J = 4(L:t) (B+B)Lf· (57)

Equation (57) is the conventional result from the electric boundary condition that the
electric displacement component perpendicular to the crack faces is zero along the crack
faces. Equations (55), (56) and (57) will be compared explicitly in Section 6 regarding the
contribution of applied electric loadings.

5. SELF-CONSISTENT CALCULAnON OF CRACK PROFILE

Under a pure mechanical loading for small deformation, conventional linear elastic
fracture analysis uses the crack profile before deformation to evaluate the stress fields
and the energy release rate. In previous sections we also employed this approach and
systematically formulated the stress and displacement fields as well as the energy release
rate for coupled mechanical and electric problems. However, it is noted that under combined
mechanical and electric loadings, the crack opens and the crack deformation is very sensitive
to the electric field (inside the opened crack) which in turn, is affected by the opened crack
profile. So a geometrically nonlinear electro-elastic analysis, here called self-consistent
calculation, is adopted to determine the deformed crack profile and subsequently the energy
release rate for the crack propagation.

For a slit crack, the crack opening along the X2 axis, .1U2 from conventional calculations
is given by eqn (50) which can be further arranged as

.1U2 = a[(B+B)(L~ -d)b sinO, 0 ~ 0 ~ n. (58)

Clearly, the profile of crack opening is an ellipse with the major semi-axis of a and the
minor semi-axis of b = aI2[(B+B)(L~ -d)]2' where subscript 2 means the second term in
the vector. Thus, the ratio c.:c of the minor semi-axis to the major semi-axis evaluated from
the conventional calculation is:
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(59)

which will be compared with the results obtained from the self-consistent calculation later.
The self-consistent method requires that the half maximum opening of the elliptical

cylinder cavity should be equal to the minor semi-axis. That means

(60)

where as is the ratio of the minor semi-axis to the major semi-axis in the self-consistent
calculation and f(as) is a four-dimensional vector and a function of as and the remote
loadings. After tedious algebraic calculation, eqn (60) is finally re-arranged as

where

Co = [i(B-B)L~ +2(A<p~)a, +A<p~)~)h-2

C, = -2K'B44 (B24 La] +B.;~·Lal)·-i(B24+B24)[L<p>a,-L<p)~]

C2 = (B24 La] +B24La])+iKcB44(B24L<p>a,-B24L<p>~).

(61 )

(62)

After careful checking of eqn (62), we found that these four parameters, go, gil 92 and 9,
are all real. Thus, the real root to eqn (6]) is given by

(63)

where

(64)

In the next section, the crack opening will be numerically calculated and plotted.

6. RESULTS AND DISCUSSION

In this section, we numerically calculate and plot the results under different loading
conditions. For simplicity, hereafter, we ignore the superscript "E" for the elastic constants
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and the superscript "e" for the dielectric constants. If the X2 direclion is parallel to the
poling direction, the constitutive relation is given by

all CII C13 C12 0 0 0 0 e" 0 ell

a22 Cl3 C Cl3 0 0 0 0 e" 0 e2233

a 33 C l 2 Cl3 C11 0 0 0 0 e31 0 e33

a 23 0 0 0 C44 0 0 0 0 e l 5 2e23

a 13 0 0 0 0 (CII -cI2)/2 0 0 0 0 2el3

a 12 0 0 0 0 0 C44 el5 0 0 2el2

D I 0 0 0 0 0 e15 -K II 0 0 -E I

D2 e31 e'3 e3 J 0 0 0 0 -- K3' 0 -E2

D3 0 0 0 el5 0 0 0 0 -KII -E3

(65)

The N matrix is formulated in Appendix 3 for this orientation. Then, the eigen-equation,
i.e. eqn (AI8) is solved using the commercial code, MATLAB.

The present work uses the PZT-4 ceramics as a model material. The material constants
are given below:

Elastic constants (10 10 N/m2):

CII = 13.9, CI2 = 7.78, CI3 = 7.43, C33 = 11.3, C44 = 2.56;

Piezoelectric constants (C/m 2
) :

e31 = --6.98, e33 = 13.84, el5 = 13.44;

Dielectric constants (10- 9 F/m):

KII = 6.00, K 33 = 5.47; K
C = 8.85 X 10- 3; (66)

where Nand C denote, respectively Newton's and Coulombs. The dielectric constant of
vacuum, K

C
, is listed here again for convenience.

In order to verify the validity of the formulas derived in previous sections, we resort
to the finite element analysis and the commercial software ABAQUS is used. The example
considered is a finite medium with a centered crack or elliptical cavity under both mechanical
and electrical loadings. The specimen dimensions, finite element mesh and loading con­
ditions are shown in Fig. 3(a) for the case of a centered elliptical cavity with Fig. 3(b) being
the magnification of the mesh around the cavity. As the medium size is much larger than
that of the crack or cavity, the near tip solution should be nearly the same as that for the
infinite medium. Eight-noded plane strain elements were used in the analysis.

Figure 4 shows the distribution of the stress a22 and electric field £2 in front of the
right major axial apex of an elliptical cavity with the major semi-axis a = I m and the
minor semi-axis b = 0.2 m under combined mechanical and electrical loadings in the Xr

direction. The other mechanical and electric loadings not specified in the figure are zero
and this convention will apply for all figures in the following discussion. As expected, both
the stress and the electric field are concentrated at the apex of the cavity, as shown in Fig.
4. The stress and electric concentrations increase as the parameter 0'. decreases. When 0'.

approaches zero, the cavity reduces to a slit crack. Figure 5 shows the distribution of the
stress a22 and electric field E22 in the crack line for a slit crack. Like the case of a pure Mode
III crack (Zhang and Tong, 1996), the mechanical stresses and electric fields at the crack
tip have totally different behaviors. The stresses are singular at the crack tip, but the electric
fields are not and the boundary condition by eqn (22) requires that E 2 in the material must
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be equal to that in the crack. From eqns (33) and (37), it can be derived that £2 at the crack
tip in the material is

(67)

where £2 and £f and afl and (J''f2 are, respectively, in units of Vim and Pa.
Figures 4 and 5 show that the analytical results agree well with the finite element

analysis, which indicates that the analytical solutions formulated in Sections 2 and 3 are
valid for both an elliptical cylinder cavity and a slit crack.

When the cavity is reduced to a slit crack and the crack medium is considered as a
vacuum, the electric field inside the crack and the energy release rate for the crack propa­
gation under in-plane combined mechanical--electrical loadings can be further simplified
explicitly as

£2 = l133.72£~<--20.l6(J'fl-1.53(J'f2

J= [2.77«(J'f2?+3.63«(J'm 2 ]a x 10- 11 (68)

where a, £h (J'ij and J are, respectively, in units of m, V1m, Pa and N/m and hereafter the
same units are used for those properties, and high-order small terms are ignored in eqn
(68), The expression for £2 in the crack by eqn (68) is exactly the same as that for £2 at the
crack tip in the material, as shown by eqn (67), which is a direct consequence of the
continuity of the tangential component of the electric field strength. It is seen from eqn (68)
that the component of electric field strength £2 inside the crack is more than lOOO times
greater than the applied electric field, while the energy release rate J is independent of either
the applied electric fields or the mechanical loading parallel to the crack surface, i.e. (J'f, .

When the parameter d is considered zero, the energy release rate for the crack propa­
gation by eqn (57) can be expressed explicitly as

J= [4.37x 1O-'(afc,)2+2,77 x lO' 2(af2)2+3.63x 10- 2 «(J'r'2) 2

+0.492(J'fl £2' +3.73 x 1O-2(J'r'2£'f - 13.83(£r')2]a x 10 -9 (69)

which has almost the same form as the results obtained by Park and Sun (1995) in the
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absence of (j;"l and (j;"'2' In this case, the energy release rate decreases with increasing the
applied electric field E't, implying that the applied electric loading will impede the crack
propagation.

Finite element evaluation of the energy release rate J is based on (Cherepanov, 1979)

(70)

where h = I /2CikIC'/'k/ - I /2KUE,Ei - eUklcklEi is the electric enthalpy per unit volume; r is an
integration contour around the crack tip or ellipse apex, n is the unit normal vector to the
contour. When the crack faces are free ofexternal charge and traction, J is path independent
(Cherepanov, 1979; Suoetal., 1992).

Figure 6 shows the electric field at the crack tip and the energy release rate calculated
from eqns (68) and (69) together with the results from the finite element analysis. Again,
the theoretical prediction agrees with the finite element calculation. With all relevant
formulas being verified by finite element analysis, hereafter, we will no longer present the
finite element results in the following discussion. As can be seen in Fig. 6, the energy release
rate is independent of the applied electric field when the electric field inside the slit crack is
taken into account. A mathematical slit crack does not have any width and the perpendicular
component of the displacement continues cross the crack faces. Consequently, the electrical
field far ahead of the crack tip is equivalent to that far behind the crack tip. Therefore, the
applied electric field does not contribute to the energy release rate (Zhang, 1994a). If the
electric field inside the crack is ignored, i.e. K

C = 0, however, the applied electric field
impedes crack propagation (Suo et al., 1992).

As described in both Section 4 and Appendix 2, the energy release rate can be calculated
from the four potentials. Since the mechanical displacement and the electric potential are
chosen as independent variables, it is convenient to use the electric enthalpy and its associate
potential to evaluate the energy release rate for the elliptical cavity. An ellipse has two
parameters, the minor semi-axis h and the major semi-axis a. When the cavity changes its
size while maintains its shape, the potential associate with the electric enthalpy changes.
The energy release rate for the cavity is defined in the present study as a ratio of infinitesimal
change in the potential over infinitesimal change in the cavity size, while the cavity shape
remains unchanged. For a given cavity, both the electric field inside the cavity and the
energy release rate are functions of the remote mechanical and electrical loadings, as shown
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in eqns (28) and (54). We plot eqns (28) and (54) in Figs 7 and 8 to illustrate the
relationships.

Figure 7 shows the variations of the electric field inside the cavity and the energy
release rate with the applied stress under a constant applied electric field. The electric field
inside the cavity is about five times greater than that of the applied electric field and
increases its absolute magnitude with increasing applied stress. The energy release rate
increases also when the absolute value of the applied stress increases. It should be noted
that for an elliptical cavity the energy release rate increases with increasing absolute value
of a compressive-applied stress as long as the upper and lower faces of the cavity do not
contact one another. When the upper and lower faces of the cavity come into contact,
which could be the case for a slit crack under compression, the traction-free condition along
the cavity faces no longer holds and the energy release rate loses its meaning. Figure 8
indicates the electric lield inside the cavity and the energy release rate as functions of the
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applied electric field under a constant applied stress. The electric field strength inside the
cavity is directly proportional to the applied electric field with a slope about five. Since the
cavity has a finite width, either a positive or a negative applied electric field decreases the
energy release rate, as shown in Fig. 8. This result indicates that the influence of the applied
electric field on the energy release rate depends on the shape of the cavity. An insulating
crack opens under applied mechanical loads, the applied electric field will then contribute
itself to the energy release rate if the opened crack profile is considered. We will discuss this
case later.

To demonstrate the influence of the electric property of the cavity medium, we consider
another extreme, a conducting cavity having an infinitely large dielectric constant. In this
case, the electric field inside the cavity is zero. Figure 9 shows the energy release rate J for
the cavity propagation as a function of the applied electric loading Ef or E'f without
applying any mechanical load. The energy release rate J is positive definite with respect to
the applied electric loadings. An electrically-positive-definite energy release rate means that
the electrical loading would propagate the crack rather than impede it. Comparing Figs 9
and 8 indicates that the electric behavior for the conducting cavity differs totally from that
for the vacuum cavity. As can be seen in Fig. 9, E'F makes a greater contribution to the
energy release rate than Ef, when the two being at the same level of magnitude. It is E ('
rather than E 2 that causes the electrostrictive effect to the cavity and, consequently,
promotes the cavity propagation. For the conducting cavity, the energy release rate J is
also positive definite with respect to the applied mechanical loading, as shown in Fig. 10.
Thus, the energy release rate for a conducting crack is always positive definite under the
combined mechanical-electricalloadings. For a vacuum cavity, however, the energy release
rate J could be negative when the electrical loading is high and the mechanical loading is
low (see Fig. h Figure 10 shows that with the same level of magnitude, af~ makes the
largest contribution to the energy release rate among the three loading modes. In particular
at! can also propagate the crack due to the anisotropic and piezoelectric properties of the
poled ceramics.

For an electrically conductive crack, the energy release rate J formulated by eqn (56)
can be explicitly represented with sufficient accuracy as

When the cavity is reduced to a slit crack, eqn (71) shows that the applied electric field
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perpendicular to the crack, i.e. £2, does not contribute anything to the energy release rate,
because a conductive crack does not change the electric field along the x2-axis, i.e. £2' in
both regions far ahead and far behind the crack tip. Equation (71) indicates that the energy
release rate J for a conductive crack is quadratic function of the applied mechanical loadings
and the applied electric field along the xI-axis, i.e. the electric field parallel to the conductive
crack. The finding that an electric loading parallel to the crack can propagate a conducting
crack are qualitatively consistent with McMeeking's (1987) results for isotropic dielectric
ceramics. As discussed above, the contribution from £f is mainly due to the electrostrictive
effect and this effect is much more significant for a conducting crack than a conducting
cavity. It is clear that different electric properties (i.e. different dielectric constants) of slit
cracks lead to totally different results regarding the contribution of applied electric loadings
to crack propagation.

We have studied also the case that the poling direction is parallel to the xI-axis, and
the results are similar to those described above for the poling direction parallel to the X 2­

axis. Therefore, those results are not repeated again in the present study.
As discussed above, the energy release rate J for a slit crack with dielectric constant

KC = 8.85 X 10- 12 (Fjm) is independent of applied electric loadings in the linear analysis
using the undeformed crack profile. Under the applied tensile loading the crack opens and
the deformed crack surface profile constitutes an ellipse form as shown in eqn (58) for the
opening of the crack faces, although the ellipse will be very "flat". As soon as the crack
opens and becomes an elliptical cavity, the effects of applied electric loadings on the energy
release rate emerges, as shown in Fig. 8. In order to study the effects of the applied electric
field on the energy release rate we have to consider the crack opening. In principal, the
applied electric field could influence also the crack opening. Thus, it is more reasonable to
determine the final crack surface profile under combined mechanical and electric loadings
by introducing an elliptical crack geometry with a to-be-determined minor semi-axis. Figure
11 shows :x, evaluated from the self-consistent calculation by eqn (60), together with :Xc for
a list crack obtained from conventional calculation by eqn (59) as a function of the electric
loading £'{. It is found that if the electric loading is zero, :xs is equal to :Xc and both are
proportional to the mechanical loading 1122' If the electric loading is not zero, however, :x,
is different from :Xc and the difference becomes larger as the magnitude of the electric field
increases. It is also found from Fig. II that the direction of the electric loading also affects
the value of :xs (i.e. the opening of the crack). Compared with the crack opening without
electric loadings, a positive applied electric loading makes the crack opening larger while a
negative applied electric loading makes the crack opening smaller.
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Since the geometry ofa crack affects its propagation, the deformed crack profile should
be used in the calculation of the energy release rate. Figure 12 shows the energy release rate
calculated using the deformed crack profile as. Since both the magnitude and the change of
as are very small in the loading range, the energy release rate is almost symmetric about
Ef = 0 when the crack medium is considered as a vacuum (KC = 8.85 X 10- 12 F/m). If the
applied electric loading is much larger, the influence of as would be emerged and the energy
release rate would be expected to be asymmetric. For a vacuum crack K

C = 8.85 X 10- 12

(F/m) and the applied electric field E~"C contributes nothings to the energy release rate if the
electric field inside the crack is taken into account and if the crack undeformed profile is
used. Using the self-consistent calculation, we can determine the crack opening and then
calculate the energy release rate by eqn (54). Figure 13 compares the energy release rates
obtained from the three calculations: (1) counting the electric field inside the crack and
using the undeformed crack profile; (2) counting the electric field inside the crack and using
the deformed crack profile (the self-consistent calculation); and (3) ignoring the electric

70 ,-----------------,

60
For 0;=40 (MPa)

~ 50
6.....
E40

~~ 30
]
;>-.

tf 20
~

10~

](C=8.85xlO-12 (F/rn)
a=] (mm)
b/a=O

For 0;=20 (MPa)

-------
105o-5

o L......-'--'-->---.L-'--'--'--'---L--'--............---'---'-.L-..>.--'--'----'

-10

Applied electric loading E;' (kV/crn)

Fig. 12. Energy release rate as a function of applied electric loading using the crack profile calculated
by the self-consistent method.



Linear electro-elastic analysis of a cavity or a crack

20 ,..--------------...,
2141

Self-consistent analysis
1(c=:8.85xlO'12 (F/m),

Conventional analysis
1(c=O

0;=20 (MPa)

a=1 (rom)
b/a=O

Conventional analysis
KC=8.85xlO'12 (F/m)

105o-5
OL...J.--'--'--'----L-'--'--'---'--L...L.-'-.l.-L~-'--'---'---1-J

-10

Applied electric loading E; (kV/cm)

Fig. 13. Comparis<}n of the self-consistent calculation with the conventional calculations for energy
release rate.

field inside the crack and using the undeformed crack profile. Ignoring the electric field
inside the crack means taking the dielectric constant K

C
= O. As can be seen in Fig. 13 that

using the self-consistent calculation, the applied electric field E'f produce also a resistance
to crack propagation, but the resistance is much smaller than that obtained from ignoring
the electric field inside the crack.

For a given piezoelectric material, the fracture toughness should be a constant. When
the energy release rate is larger than the fracture toughness the crack will propagate. As
illustrated in Fig. 13 that the electric field E'.f may be against the mechanical loadings to
propagate the crack In other words, the critical mechanical loading may be enhanced by
an applied electric field. In Fig. 14 the energy release rate is fixed as the same as that under
pure mechanical loading, 0":(2 = 20 MPa. As expected, the applied mechanical loading
maintains if the electric field inside the crack is taken into account and the undeformed
crack profile is used. For the other two cases, either a positive or a negative applied
electric field along the xraxis requests a higher mechanical loading to propagate the crack
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propagation. Again, the conventional calculation (ignoring the electric field inside the crack
and using the undeformed crack profile) leads to a higher level of mechanical loading than
that obtained from the self-consistent calculation.

For a conductive crack, the results of crack deformation and energy release rate
evaluated from the self-consistent calculation are nearly the same as those obtained from
the conventional calculation since there is no electric field inside the crack. It should be
pointed out again that an applied electric field parallel to the crack can promote crack
propagation mainly due to the electrostrictive effects.

7. CONCLUDING REMARKS

This paper presents analytical solutions with finite element confirmation for an infinite
piezoelectric medium with an elliptical cavity or a slit crack under combined mechanical­
electrical loadings. The effects of electric loadings on the energy release rate of the crack or
cavity have been studied. The results show that a complex four-dimensional vector of
intensity factors is needed to describe the crack tip stress and electric fields in the linear
electric~lastic analysis. The first three components of the vector are real and cor­
respondingly equal to the half values of the mode II, I and III stress intensity factors. The
fourth component of the complex vector is real for an insulating crack and, in general,
complex for a conducting crack. The electric displacement intensity factor has the con­
ventional form when the parameter d equals zero which requires that the ratio of the
dielectric constant of the crack to the effective dielectric constant of the material is much
smaller than the ratio of the minor semi-axis to the major semi-axis of the ellipse. It is
difficult to meet this requirement in real piezoelectric materials. The electric field inside the
cavity is uniform and depends on the combined applied mechanical and electrical loadings,
the electric property of the cavity and the ratio of the minor semi-axis to the major
semi-axis. For a slit vacuumed crack, the electric field inside the crack in the direction
perpendicular to the crack magnifies the corresponding electric loading by more than 1000
times. In the presence of such a strong electric field inside the crack, the self-consistent
analysis is needed to determine the deformed crack profile and the energy release rate for
crack propagation. In addition, the high electric field inside the crack may cause electric­
breakdown, which will change the insulating crack to a conducting one.

The energy release rate for the propagation of an elliptical cavity with a constant ratio
of the minor semi-axis to the major semi-axis is a function of the combined mechanical­
electrical loadings, the ellipse geometry and the dielectric constant of the cavity medium.
For an insulating crack, the energy release rate is independent of the applied electric field
either perpendicular or parallel to the crack when the electric field inside the crack is taken
into account. For a conducting crack, even though the electric field perpendicular to the
crack does not contribute to the energy release rate, the applied electric field parallel to the
crack drives the crack to propagate. Makino and Kamiya (1994) investigated experimentally
the effects of applied electric field on the modulus of rupture (fracture strength). Their
results show that either a positive or a negative electric field reduces the modulus of rupture.
We have comprehensively studied the effects of applied electric field on the modulus of
rupture and observed the similar phenomenon (Fu and Zhang, I997a) . The original insu­
lating crack may breakdown electrically and cause a fundamental change in its behavior.
The detailed results will be reported separately (Fu and Zhang. 1997b).
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APPENDIX I

General solution
Barnett and Lothe (1975), Suo et al. (1992), Sosa and Pak (1990), Pak (1992) and Park (1994) have formulated

the general solution using Stroh formalism (Eshelby et al., 1953; Stroh, 1958; Ting, 1996) with strains and electric
field strengths which, in turn, can be expressed in terms of the displacements and electric potential, as independent
variables. In this case, the governing equations are given by:

(AI)

with boundary conditions

(T'n=t

(D'-D')'n= -q

(E'-E')xn=O (A2)

where Ui is a component of the displacement vector, c/> is the electric potential, q is the density of free charge on
the surface between the two media, t is the traction along the boundary, and n is the unit vector normal to the
boundary.

Following Barnett and Lothe's (1975) treatment. the three-dimensional space is extended to a four-dimen­
sional space in the following steps:

( I) define a new 0 perator

(A3)

(2) let U 4 denote the electric potential c/>
(3) define new strain components

S,. = S4; = -- ~ E, and S44 = 0 i,j = I, 2, 3

(4) define new stress components

k;4 = k4' = D; and k 44 = 0 i,j = 1,2, 3

(5) define new elastic constant components

CjjU = ('~k/

C4Jk/ = C,4k! = Cil4, = CiU4 == eiil, i,j, k, 1= 1,2,3

The extended elastic constant tensor is still symmetric

Consequently, the governing and constitutive equations can be expressed in the four-dimensional system as

k"oi = 0, i,j, k, I = 1,2,3,4.

Thereafter, a repeated subscript denotes summation from I to 4 unless specified otherwise.
When U; are functions of x, and x, only, the general solution is given by

(A4)

(AS)

(A6)

(A7)

(A8)
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u, = AJ(z)

where

Z = X, +1'-'2'

Combining eqns (A8) and (A9), we have

[Q+(R+R")p+Tp2JA, = 0

where

A non-zero solution of AI requires that
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(A9)

(AlO)

(All)

(AI2)

(AI3)

Equation (A13) has eight roots which cannot be real because of the positive definiteness of the strain energy and
electric energy densities. The eight roots form four conjugate pairs and we shall choose Im(p,) > 0 for IX = I, 2,
3,4.

In general, the extended displacements and stresses can be represented as

u = At(z) +Af(z)

L2 = ljJ, and L, = -ljJ.2

ljJ = Lf(z) +Lf(z).

The matrices A and L have the following correlation

I
L = (R1+pT)A = --(Q+pR)A.

p

Equation (A 17) can be rearranged into a standard eigen-equation

(AI4)

(A15)

(A16)

(A17)

(
N'

N=
N ,

N2) (A)
NT' (= L

(AI8)

Since the eigen-vectors are uniquely determined up to an arbitrary multiplicative constant, they are normalized to
meet the properties:

AAT +AAT = LLT +LLT = 0

LAT +LAT = ALT +ALT = I (AI9)

where I is the identity matrix. Now, the mechanical and electrical coupling problem is reduced to the standard
eigen-equation (AI8). Moreover, the matrix 8,

is a Hermitian matrix and can be divided into

8 = iAL'

B= (8,
8,

(A20)

(A21)

where 8, is the 3 x 3 upper left-hand block and B44 is the lower right-hand element. For stable materials Lothe
and Barnett (1975) show that

8 2 = iiI. 8, is positive definite, but B44 < O.

APPENDIX 2

(A22)

Thermodynamic functions and the energy release rate
Parton and Kudryavtsev (1988) summarized the thermodynamic functions for piezoelectric materials. The

internal energy, electric enthalpy and full Gibbs energy are briefly described here. The internal energy per unit
volume, u is expressed in a differential form as



2146 Tong-Yi Zhang et at.

dl/ = (JiJdli,,+E,dD,+Tds (A23)

where s is the entropy per unit volume; T is the absolute temperature; E and D are the electric field strength and
electric displacement vectors, respectively; and (J", and liiJ are the components of stress and strain tensors,
respectively. Define the free energy per unit volume,fas

(A24)

for which

The electric enthalpy per unit volume, h is defined as

h = u~E,D,~Ts

for which

dh = (J"de",-D,dEi-sdT.

Introduce the mechanical enthalpy per unit volume, w, as

for which

dw = -e'jda,,+EidDi-sdT.

The full Gibbs function per unit volume, g is defined as

g = u-a'/'i~E,D,~T~

for which

dg =, ~f;"d(J'i-D,dE,-sdT.

At a constant temperature, egns (A25), (A27), (A29) and (A31) reduce, respectively, to

dh = (Ji/dei,-D,dE,

dw = -i:"dau+Ei,dD,

dg = -I:,;d(Ju-D,dE,.

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

(A35)

There are two independent variables, one is mechanical and the other is electrical, determining the four ther­
modynamic functions at a constant temperature. The independent mechanical variable can be the strains or the
stresses, while the independent electric variable can be the electric field strengths or the electric displacements. If
the strains and the electric field strengths are considered as independent variables, the stresses and electric
displacements are given by

(A36)

where d"iJ are the isothermal elastic constants, em" are the piezoelectric constants, and KJk are the isothermal
dielectric constants at constant strains. Equation (A36) expresses the linear relationship among the four variables.
If another two variables are treated as independent variables, the corresponding constitutive equations can be
obtained by re-arranging eqn (A36). For example, if the independ(:nt variables are the stresses and the electric
field strengths, the constitution equations are given by

(A37)

where S~k1 are the isothermal elastic compliancies at a constant electric field strength; K7, are the isothermal
dielectric permittivities at constant stresses; df'j are the piezoelectric moduli. There are relations among these
material properties:

(SC) 1 = c"

dP = cst. e = dPcE

(A38)
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From eqns (A32)-(A35), we have the following statements of the total virtual work for the entire domain,
D, for an isothermal process

Ie (l; 6u;-rjm;6D,) df- In DfdD = 0

r(E; 6u; +D; orjm,) df -- r oh dD = 0
Jr Jrl

f( -u, bt;- rPn;D, bD;) df - In owdD = 0

Ie (-u;OE;+D;bf/m;) df - In bgdD = 0

(A39)

(A40)

(A4I)

(A42)

where f denotes the boundary of the domain, U; is a component of the displacement vector, rP is the electric
potential, t is the traction along the boundary, and n is the unit vector normal to the boundary. Equation (A42)
was derived before by Zhang (1994b). Introducing four isothermal potential energies as

where the prescribed properties on the boundary are stresses and electric potential;

PH = r(t,u; + D;rPn,) df - r h dD
Jr' In

where the prescribed properties on the boundary are stresses and electric displacements;

Pw = r(-u,(,--D;rPn;)df- r wdD
Jr Jl1

where the prescribed properties on the boundary are displacements and electric potential:

PG = f,(-u;t;+D;rPn;)df- InUdD

where the prescribed properties on the boundary are displacements and electric displacement.
Thus, eqns (A39)-(A42) can be re-written as

oPH = r(E, oU; + D, orPn,) df- r oh dD= 0Jr In

oPw = r(-u;ot;-rj,nioD,)df- r owdD = 0
J," In

OPe; = f,(-U;Ot,+D'OrPn,)df - In ogdD = O.

(A43)

(A44)

(A45)

(A46)

(A47)

(A48)

(A49)

(A50)

If the generalized force, 1', the generalized displacement, 11, the generalized voltage, V and the generalized
charge, Q are used, then the changes in the total free energy, F, the total electric enthalpy, H, the total mechanical
enthalpy, Wand the total full Gibbs energy, G for the entire sample are given by

dF= 1'dl1+ VdQ

dH = P dl1- Qd V

d W =-l1dP+ VdQ

dG = --l1dP-QdV.

(A5!)

(A52)

(A53)

(A54)

Now, consider a piezoelectric material containing a pre-crack. Adding the energy change associated with the
crack extension into each of eqns (A51)-(A54) leads to
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dF = Pdtl+ VdQ-JdA (A55)

dH= Pdtl-QdV-JdA (A56)

dW = -tldP+ VdQ-JdA (A57)

dC = -tldP-QdV-JdA (A58)

where A is the crack area; and J is the energy release rate for crack propagation and defined as

(OF) (OH) (O~ (OC)
J= - aA ~.Q = - ?A "Y = - 7JA)p.Q = - oA Py'

(A59)

Alternatively, the energy release rate can be evaluated by following Rice's (1968) treatment of elastic fracture
mechanics and is given byt

(A60)

APPENDIX 3

N matrix/or the x,-axis in the poling direction
When the x,-axis is chosen to be parallel to the poling direction, the extended constitute equation is given by

eqn (A8). Consequently, the Q, Rand T matrices have, respectively, the following forms:

o
o

o

o e,s

Q=
o o

2

o

o

(A62)

Thus, the N matrix is obtained as

0 -I 0
1'15

0 0 0
C44 C4'~

N2I 0 0 0 0 N'6 0 N"

0 0 0 0 0 0 0
('44

N4I 0 0 0 0 N" 0 N 4 ,

N=
0 0

(A63)N5I 0 0 N2I 0 N41

0 0 0 0 -I 0 0 0

0 0
C 12 -C 1 l

0 0 0 0 0
2

1" e l 5
0 0 0 --!..? +"" 0 0 0

('44 c'u

where

t In the previous work (Zhang and Tong, 1996) the contribution to the energy release rate from the boundary
integrals, as shown in eqns (A47)-(A50), was not taken into account. The sign of the electric terms in eqns (58),
(59), (71), (74) and (75) in the previous work should be changed from plus to minus.
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e31c33 -e]]cIJ
--------

T

T

N _ KJ]
2tJ - ,

T

(':13

T

N -~~
2~ --

T

Then, it is straightforward to solve the standard eigne-equation of eqn (AI8) using a commercial code, such as
MATLAB.


